*** Welcome to piglix ***

Raman Effect


Raman scattering or the Raman effect /ˈrɑːmən/ is the inelastic scattering of a photon by molecules which are excited to higher vibrational or rotational energy levels. It was discovered by C. V. Raman and K. S. Krishnan (who was a student of C.V. Raman) in liquids, and independently by Grigory Landsberg and Leonid Mandelstam in crystals. The effect had been predicted theoretically by Adolf Smekal in 1923.

When photons are scattered from an atom or molecule, most photons are elastically scattered (Rayleigh scattering), such that the scattered photons have the same energy (frequency and wavelength) as the incident photons. A small fraction of the scattered photons (approximately 1 in 10 million) are scattered by an excitation, with the scattered photons having a frequency different from, and usually lower than, that of the incident photons. In a gas, Raman scattering can occur with a change in energy of a molecule due to a transition to another (usually higher) energy level. Chemists are primarily concerned with the transitional Raman effect.

The inelastic scattering of light was predicted by Adolf Smekal in 1923 (and in German-language literature it may be referred to as the Smekal-Raman effect). In 1922, Indian physicist C. V. Raman published his work on the "Molecular Diffraction of Light," the first of a series of investigations with his collaborators that ultimately led to his discovery (on 28 February 1928) of the radiation effect that bears his name. The Raman effect was first reported by C. V. Raman and K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam, on 21 February 1928 (that is why in the former Soviet Union the priority of Raman was always disputed; thus in Russian scientific literature this effect is usually referred to as "combination scattering" or "combinatory scattering"). Raman received the Nobel Prize in 1930 for his work on the scattering of light.


...
Wikipedia

...