Procollagen-proline dioxygenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Alpha subunits of procollagen-proline dioxygenase. Image shows substrate binding region (orange) and the binding groove of tyrosine residues (yellow)
|
|||||||||
Identifiers | |||||||||
EC number | 1.14.11.2 | ||||||||
CAS number | 9028-06-2 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / EGO | ||||||||
|
Search | |
---|---|
PMC | articles |
PubMed | articles |
NCBI | proteins |
Procollagen-proline dioxygenase, commonly known as prolyl hydroxylase, is a member of the class of enzymes known as 2-oxoglutarate-dependent dioxygenases. These enzymes catalyze the incorporation of oxygen into organic substrates through a mechanism that requires 2-oxoglutarate, Fe2+, and ascorbate. This particular enzyme catalyzes the formation of (2S, 4R)-4-hydroxyproline, a compound that represents the most prevalent post-translational modification in the human proteome.
Procollagen-proline dioxygenase catalyzes the following reaction:
procollagen L-proline + 2-oxoglutarate + O2 → (2S, 4R)-4-hydroxyproline + succinate + CO2
The mechanism for the reaction is similar to that of other dioxygenases, and occurs in two distinct stages: In the first, a highly reactive Fe(IV)=O species is produced. Molecular oxygen is bound end-on in an axial position, producing a dioxygen unit. Nucleophilic attack on C2 generates a tetrahedral intermediate, with loss of the double bond in the dioxygen unit and bonds to iron and the alpha carbon of 2-oxoglutarate. Subsequent elimination of CO2 coincides with the formation of the Fe(IV)=O species. The second stage involves the abstraction of the pro-R hydrogen atom from C-4 of the proline substrate followed by radical combination, which yields hydroxyproline.
As a consequence of the reaction mechanism, one molecule of 2-oxoglutarate is decarboxylated, forming succinate. This succinate is hydrolyzed and replaced with another 2-oxoglutarate after each reaction, and it has been concluded that in the presence of 2-oxoglutarate, enzyme-bound Fe2+ is rapidly converted to Fe3+, leading to inactivation of the enzyme. Ascorbate is utilized as a cofactor to reduce Fe3+ back to Fe2+.