*** Welcome to piglix ***

High-valent iron


High-valent iron commonly denotes compounds and intermediates in which iron is found in a formal oxidation state > 3 that show a number of bonds > 6 with a coordination number ≤ 6. The term is rather uncommon for hepta-coordinate compounds of iron. It has to be distinguished from the terms hypervalent and hypercoordinate, as high-valent iron compounds neither necessarily violate the 18-electron rule nor necessarily show coordination numbers > 6. The ferrate ion [FeO4]2− was the first structure in this class synthesized. The synthetic compounds discussed below contain highly oxidized iron in general, as the concepts are closely related.

Oxoferryl species are commonly proposed as intermediates in catalytic cycles, especially biological systems in which O2 activation is required. Diatomic oxygen has a high reduction potential (E0 = 1.23 V), but the first step required to harness this potential is a thermodynamically unfavorable one electron reduction E0 = -0.16 V. This reduction occurs in nature by the formation of a superoxide complex in which a reduced metal is oxidized by O2. The product of this reaction is a peroxide radical that is more readily reactive. The abundance of these species in nature and the chemistry that is available to them are the reasons why the study of these compounds is important. A widely applicable method for the generation of high-valent oxoferryl species is the oxidation with iodosobenzene.

Several syntheses of oxoiron(IV) species have been reported. These compounds model biological complexes such as , NO synthase, and isopenicillin N synthase. Two such reported compounds are thiolate-ligated oxoiron(IV) and cyclam-acetate oxoiron(IV). Thiolate-ligated oxoiron(IV) is formed by the oxidation of a precursor, [FeII(TMCS)](PF6) (TMCS = 1-mercaptoethyl-4,8,11-trimethyl-1,4,8,11-tetraza cyclotetradecane), and 3-5 equivalents of H2O2 at -60 ˚C in methanol. The iron(IV) compound is deep blue in color and shows intense absorption features at 460 nm, 570 nm, 850 nm, and 1050 nm. This species FeIV(=O)(TMCS)+ is stable at -60 ˚C, but decomposition is reported as temperature increases. Compound 2 was identified by Mössbauer spectroscopy, high resolution electrospray ionization mass spectrometry (ESI-MS), x-ray absorption spectroscopy, x-ray absorption fine structure (EXAFS), UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), and results were compared to DFT-calculations.


...
Wikipedia

...