In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis, arch(a)eonucleosynthesis, archonucleosynthesis, protonucleosynthesis and pal(a)eonucleosynthesis) refers to the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) during the early phases of the Universe. Primordial nucleosynthesis is believed by most cosmologists to have taken place in the interval from roughly 10 seconds to 20 minutes after the Big Bang, and is calculated to be responsible for the formation of most of the universe's helium as the isotope helium-4 (4He), along with small amounts of the hydrogen isotope deuterium (2H or D), the helium isotope helium-3 (3He), and a very small amount of the lithium isotope lithium-7 (7Li). In addition to these stable nuclei, two unstable or radioactive isotopes were also produced: the heavy hydrogen isotope tritium (3H or T); and the beryllium isotope beryllium-7 (7Be); but these unstable isotopes later decayed into 3He and 7Li, as above.
Essentially all of the elements that are heavier than lithium were created much later, by stellar nucleosynthesis in evolving and exploding stars.
There are several important characteristics of Big Bang nucleosynthesis (BBN):
The key parameter which allows one to calculate the effects of BBN is the baryon/photon number ratio, which is a small number of order 6 x 10−10. This parameter corresponds to the baryon density and controls the rate at which nucleons collide and react; from this it is possible to calculate element abundances after nucleosynthesis ends. Although the baryon per photon ratio is important in determining element abundances, the precise value makes little difference to the overall picture. Without major changes to the Big Bang theory itself, BBN will result in mass abundances of about 75% of hydrogen-1, about 25% helium-4, about 0.01% of deuterium and helium-3, trace amounts (on the order of 10−10) of lithium, and negligible heavier elements. That the observed abundances in the universe are generally consistent with these abundance numbers is considered strong evidence for the Big Bang theory.