Piwi domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Structure of the Pyrococcus furiosus Argonaute protein.
|
|||||||||
Identifiers | |||||||||
Symbol | Piwi | ||||||||
Pfam | PF02171 | ||||||||
InterPro | IPR003165 | ||||||||
PROSITE | PS50822 | ||||||||
CDD | cd02826 | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
The piwi (sometimes also PIWI; originally P-element Induced WImpy testis in Drosophila) class of genes was originally identified as encoding regulatory proteins responsible for maintaining incomplete differentiation in stem cells and maintaining the stability of cell division rates in germ line cells. Piwi proteins are highly conserved across evolutionary lineages and are present in both plants and animals. One of the major human homologues, whose upregulation is implicated in the formation of tumours such as seminomas, is called hiwi; other variants on the theme include the miwi protein in mice.
The piwi domain is a protein domain found in piwi proteins and a large number of related nucleic acid-binding proteins, especially those that bind and cleave RNA. The function of the domain is double stranded-RNA-guided hydrolysis of single stranded-RNA that has been determined in the argonaute family of related proteins. Argonautes, the most well-studied family of nucleic-acid binding proteins, are RNase H-like enzymes that carry out the catalytic functions of the RNA-induced silencing complex (RISC). In the well-known cellular process of RNA interference, the argonaute protein in the RISC complex can bind both small interfering RNA (siRNA) generated from exogenous double-stranded RNA and microRNA (miRNA) generated from endogenous non-coding RNA, both produced by the ribonuclease Dicer, to form an RNA-RISC complex. This complex binds and cleaves complementary base pairing messenger RNA, destroying it and preventing its translation into protein. Crystallised piwi domains have a conserved basic binding site for the 5' end of bound RNA; in the case of argonaute proteins binding siRNA strands, the last unpaired nucleotide base of the siRNA is also stabilised by base stacking-interactions between the base and neighbouring tyrosine residues.