Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules expressed in animal cells. piRNAs form RNA-protein complexes through interactions with piwi proteins. These piRNA complexes have been linked to both epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, particularly those in spermatogenesis. They are distinct from microRNA (miRNA) in size (26–31 nt rather than 21–24 nt), lack of sequence conservation, and increased complexity.
It remains unclear how piRNAs are generated, but potential methods have been suggested, and it is certain their biogenesis pathway is distinct from miRNA and siRNA, while rasiRNAs are a piRNA subspecies.
piRNAs have been identified in both vertebrates and invertebrates, and although biogenesis and modes of action do vary somewhat between species, a number of features are conserved. piRNAs have no clear secondary structure motifs, the length of a piRNA is, by definition, between 26 and 31 nucleotides, and the bias for a 5’ uridine is common to piRNAs in both vertebrates and invertebrates. piRNAs in Caenorhabditis elegans have a 5’ monophosphate and a 3’ modification that acts to block either the 2’ or 3’ oxygen, and this has also been confirmed to exist in Drosophila melanogaster,zebrafish,mice and rats. This 3’ modification is a 2’-O-methylation; the reason for this modification is not clear, but it has been suggested to increase piRNA stability. It is thought that there are many hundreds of thousands of different piRNA species found in mammals. Thus far, over 50,000 unique piRNA sequences have been discovered in mice and more than 13,000 in D. melanogaster.