Names | |
---|---|
IUPAC name
1-[(3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione
|
|
Other names
uridine
|
|
Identifiers | |
3D model (Jmol)
|
|
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.000.370 |
MeSH | Uridine |
PubChem CID
|
|
UNII | |
|
|
|
|
Properties | |
C9H12N2O6 | |
Molar mass | 244.20 |
Appearance | solid |
Density | .99308g/cm3 |
Melting point | 167.2 °C (333.0 °F; 440.3 K) |
log P | -1.98 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Uridine is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N1-glycosidic bond.
It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. However, thymidine is more commonly written as 'dT' ('d' represents 'deoxy') as it contains a 2'-deoxyribofuranose moiety rather than the ribofuranose ring found in uridine. This is because thymidine is found in deoxyribonucleic acid (DNA) and not ribonucleic acid (RNA). Conversely, uridine is found in RNA and not DNA. The remaining three nucleosides may be found in both RNA and DNA. In RNA, they would be represented as A, C and G whereas in DNA they would be represented as dA, dC and dG.
Some foods that contain uridine in the form of RNA are listed below. Although claimed that virtually none of the uridine in this form is bioavailable "since - as shown by Handschumacher's Laboratory at Yale School of Medicine in 1981 - it is destroyed in the liver and gastrointestinal tract, and no food, when consumed, has ever been reliably shown to elevate blood uridine levels', this is contradicted by Yamamoto et al., plasma uridine levels rose 1.8 fold 30 minutes after beer ingestion, suggesting, at the very least, conflicting data. On the other hand, ethanol on its own (which is present in beer) increases uridine levels, which may explain the raise of uridine levels in the study by Yamamoto et al. In infants consuming mother's milk or commercial infant formulas, uridine is present as its monophosphate, UMP, and this source of uridine is indeed bioavailable and enters the blood.