*** Welcome to piglix ***

Phosphoribosylaminoimidazolesuccinocarboxamide synthase

SAICAR synthase
2h31.jpg
Phosphoribosylaminoimidazole succinocarboxamide synthetase oktamer, Human
Identifiers
EC number 6.3.2.6
CAS number 9023-67-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
SAICAR synthetase
PDB 1kut EBI.jpg
Structural genomics, protein TM1243, (SAICAR synthetase)
Identifiers
Symbol SAICAR_synt
Pfam PF01259
InterPro IPR001636
PROSITE PDOC00810
SCOP 1a48
SUPERFAMILY 1a48
CDD cd00476

In molecular biology, the protein domain SAICAR synthase is an enzyme which catalyses a reaction to create SAICAR. In enzymology, this enzyme is also known as phosphoribosylaminoimidazolesuccinocarboxamide synthase (EC 6.3.2.6). It is an enzyme that catalyzes the chemical reaction

The 3 substrates of this enzyme are ATP, 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate, and L-aspartate, whereas its 3 products are ADP, phosphate, and (S)-2-[5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate.

This enzyme belongs to the family of ligases, to be specific those forming carbon-nitrogen bonds as acid-D-amino-acid ligases (peptide synthases). The systematic name of this enzyme class is 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate:L-aspartate ligase (ADP-forming). This enzyme participates in purine metabolism.

This particular protein family is of huge importance as it is found in all three domains of life. It is the seventh step in the pathway of purine biosynthesis. Purines are vital to all cells as they are involved in energy metabolism and DNA synthesis. Furthermore, they are of specific interest to scientific researchers as the study of the purine biosynthesis pathway could lead to the development of chemotherapeutic drugs. This is because most cancers lack a salvage pathway for adenine nucleotides and rely entirely on the SAICAR pathway.


...
Wikipedia

...