*** Welcome to piglix ***

Phenanthrene

Phenanthrene
Phenanthrene.png
Ball-and-stick model of the phenanthrene molecule
Phenanthrene
Names
Preferred IUPAC name
Phenanthrene
Other names
Tricyclo[8.4.0.02,7]tetradeca-1,3,5,7,9,11,13-heptaene
Identifiers
85-01-8 YesY
3D model (Jmol) Interactive image
1905428
ChEBI CHEBI:28851 N
ChemSpider 970 N
ECHA InfoCard 100.001.437
EC Number 266-028-2
28699
KEGG C11422 YesY
MeSH C031181
PubChem 995
UNII 448J8E5BST YesY
Properties
C14H10
Molar mass 178.23 g·mol−1
Appearance Colorless solid
Density 1.18 g/cm3
Melting point 101 °C (214 °F; 374 K)
Boiling point 332 °C (630 °F; 605 K)
1.6 mg/L
-127.9·10−6 cm3/mol
Hazards
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 171 °C (340 °F; 444 K)
Structure
C2v
0 D
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Phenanthrene is a polycyclic aromatic hydrocarbon composed of three fused benzene rings. The name 'phenanthrene' is a composite of phenyl and anthracene. In its pure form, it is found in cigarette smoke and is a known irritant, photosensitizing skin to light. Phenanthrene appears as a white powder having blue fluorescence.

The compound with a phenanthrene skeleton and nitrogens at the 4 and 5 positions is known as phenanthroline.

Phenanthrene is nearly insoluble in water but is soluble in most low polarity organic solvents such as toluene, carbon tetrachloride, ether, chloroform, acetic acid and benzene.

The Bardhan–Sengupta phenanthrene synthesis is a classic way to make phenanthrenes.

This process involves electrophilic aromatic substitution using a tethered cyclohexanol group using diphosphorus pentoxide, which closes the central ring onto an existing aromatic ring. Dehydrogenation using selenium converts the other rings into aromatic ones as well. The aromatization of six-membered rings by selenium is not clearly understood, but it does produce H2Se.

Phenanthrene can also be obtained photochemically from certain diarylethenes.

Reactions of phenanthrene typically occur at the 9 and 10 positions, including:

Phenanthrene is more stable than its linear isomer anthracene. A classic and well established explanation is based on Clar's rule. A novel theory invokes so-called stabilizing hydrogen-hydrogen bonds between the C4 and C5 hydrogen atoms.


...
Wikipedia

...