A pentode is an electronic device having five active electrodes. The term most commonly applies to a three-grid amplifying vacuum tube (thermionic valve), which was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode consists of an evacuated glass envelope containing five electrodes in this order: a cathode heated by a filament, a control grid, a screen grid, a suppressor grid, and a plate (anode). The pentode (called a "triple-grid amplifier" in some early literature) was developed from the tetrode tube by the addition of a third grid, the suppressor grid. This served to prevent secondary emission electrons emitted by the plate from reaching the screen grid, which caused instability and parasitic oscillations in the tetrode. The pentode is closely related to the beam tetrode. Pentodes were widely used in industrial and consumer electronic equipment such as radios and televisions until the 1960s, when they were replaced by transistors. Their main use now is in high power industrial applications such as radio transmitters. The obsolete consumer tubes are still used in a few legacy and specialty vacuum tube audio devices.
The simple tetrode or screen-grid tube offered a larger amplification factor, more power and a higher frequency capability than the earlier triode. However, in the tetrode secondary electrons knocked out of the anode (plate) by the electrons from the cathode striking it (a process called secondary emission) can flow to the screen grid due to its relatively high potential. This current of electrons leaving the anode reduces the net anode current Ia. As the anode voltage Va is increased, the electrons from the cathode hit the anode with more energy, knocking out more secondary electrons, increasing this current of electrons leaving the anode. The result is that in the tetrode the anode current Ia is found to decrease with increasing anode voltage Va, over part of the characteristic curve. This property (ΔVa/ΔIa < 0) is called negative resistance. It can cause the tetrode to become unstable, leading to parasitic oscillations in the output, called dynatron oscillations in some circumstances.