*** Welcome to piglix ***

Screen grid


A tetrode is a vacuum tube (called valve in British English) having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate (called anode in British English). There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

The tetrode was developed in the 1920s by adding an additional grid to the first amplifying vacuum tube, the triode, to correct limitations of the triode. During the period 1913 to 1927, three distinct types of tetrode valves appeared. All had a normal control grid whose function was to act as a primary control for current passing through the tube, but they differed according to the intended function of the other grid. In order of historical appearance these are: the space-charge grid tube, the bi-grid valve, and the screen-grid tube. The last of these appeared in two distinct variants with different areas of application: the screen-grid valve proper, which was used for medium-frequency, small signal amplification, and the beam tetrode which appeared later, and was used for audio or radio-frequency power amplification. The former was quickly superseded by the rf pentode, while the latter was initially developed as an alternative to the pentode as an audio power amplifying device. The beam tetrode was also developed as a high power radio transmitting tube.

Tetrodes were widely used in many consumer electronic devices such as radios, televisions, and audio systems until transistors replaced valves in the 1960s and 70s. Beam tetrodes have remained in use until quite recently in power applications such as audio amplifiers and radio transmitters.

The tetrode functions in a similar way to the triode, from which it was developed. A current through the heater or filament heats the cathode, which causes it to emit electrons by thermionic emission. A positive voltage is applied between the plate and cathode, causing a flow of electrons from the cathode to plate through the two grids. A varying voltage applied to the control grid can control this current, causing variations in the plate current. With a resistive or other load in the plate circuit, the varying current will result in a varying voltage at the plate. With proper biasing, this voltage will be an amplified (but inverted) version of the AC voltage applied to the control grid, thus the tetrode can provide voltage gain. In the tetrode, the function of the other grid varies according to the type of tetrode; this is discussed below.


...
Wikipedia

...