In electronics, the dynatron oscillator, invented in 1918 by Albert Hull at General Electric, is an obsolete vacuum tube electronic oscillator circuit which uses a negative resistance characteristic in early tetrode vacuum tubes, caused by a process called secondary emission. It was the first negative resistance vacuum tube oscillator. The dynatron oscillator circuit was used to a limited extent as beat frequency oscillators (BFOs), and local oscillators in vacuum tube radio receivers as well as in scientific and test equipment from the 1920s to the 1940s but became obsolete around World War 2 due to the variability of secondary emission in tubes.
Negative transconductance oscillators, such as the transitron oscillator invented by Cleto Brunetti in 1939, are similar negative resistance vacuum tube oscillator circuits which are based on negative transconductance (a fall in current through one grid electrode caused by an increase in voltage on a second grid) in a pentode or other multigrid vacuum tube. These replaced the dynatron circuit and were employed in vacuum tube electronic equipment through the 1970s.
The dynatron and transitron oscillators differ from many oscillator circuits in that they do not use feedback to generate oscillations, but negative resistance. A tuned circuit (resonant circuit), consisting of an inductor and capacitor connected together, can store electric energy in the form of oscillating currents, "ringing" analogously to a tuning fork. If a tuned circuit could have zero electrical resistance, once oscillations were started it would function as an oscillator, producing a continuous sine wave. But because of the inevitable resistance inherent in actual circuits, without an external source of power the energy in the oscillating current is dissipated as heat in the resistance, and any oscillations decay to zero.