An organic compound is virtually any chemical compound that contains carbon, although a consensus definition remains elusive and likely arbitrary. Organic compounds are rare terrestrially, but of central importance because all known life is based on organic compounds. The most basic petrochemicals are considered the building blocks of organic chemistry.
For historical reasons discussed below, a few types of carbon-containing compounds, such as carbides, carbonates, simple oxides of carbon (for example, CO and CO2), and cyanides are considered inorganic. The distinction between organic and inorganic carbon compounds, while "useful in organizing the vast subject of chemistry... is somewhat arbitrary".
Organic chemistry is the science concerned with all aspects of organic compounds. Organic synthesis is the methodology of their preparation.
The word organic is historical, dating to the 1st century. For many centuries, Western alchemists believed in vitalism. This is the theory that certain compounds could be synthesized only from their classical elements—earth, water, air, and fire—by the action of a "life-force" (vis vitalis) that only organisms possessed. Vitalism taught that these "organic" compounds were fundamentally different from the "inorganic" compounds that could be obtained from the elements by chemical manipulation.
Vitalism survived for a while even after the rise of modern atomic theory and the replacement of the Aristotelian elements by those we know today. It first came under question in 1824, when Friedrich Wöhler synthesized oxalic acid, a compound known to occur only in living organisms, from cyanogen. A more decisive experiment was Wöhler's 1828 synthesis of urea from the inorganic salts potassium cyanate and ammonium sulfate. Urea had long been considered an "organic" compound, as it was known to occur only in the urine of living organisms. Wöhler's experiments were followed by many others, in which increasingly complex "organic" substances were produced from "inorganic" ones without the involvement of any living organism.