*** Welcome to piglix ***

Oberth effect


In astronautics, a powered flyby, or Oberth maneuver, is a maneuver in which a rocket falls into a gravitational well, and then accelerates when its fall reaches maximum speed. The resulting maneuver is a more efficient way to gain kinetic energy than applying the same impulse outside of a gravitational well. The gain in efficiency is explained by the Oberth effect, wherein the use of a rocket at higher speeds generates greater mechanical energy than use at lower speeds. In practical terms, this means that the most energy-efficient method for a spacecraft to burn its engine is at the lowest possible orbital periapse, when its orbital velocity (and so, its kinetic energy) is greatest. In some cases, it is even worth spending fuel on slowing the rocket into a gravity well to take advantage of the efficiencies of the Oberth effect. The maneuver and effect are named after Hermann Oberth, the Austro-Hungarian-born German physicist and a founder of modern rocketry, who first described them in 1927.

The Oberth effect is strongest at a point in orbit known as the periapse, where the gravitational potential is lowest, and the speed is highest. This is because firing a rocket engine at high speed causes a greater change in kinetic energy than when fired at lower speed. Because the vehicle remains near periapse only for a short time, for the Oberth maneuver to be most effective, the vehicle must be able to generate as much impulse as possible in the shortest possible time. Thus, the Oberth maneuver is much more useful for high thrust rockets like liquid-propellant rockets, and less useful for low-thrust reaction engines such as ion drives, which take a long time to gain speed. The Oberth effect also can be used to understand the behavior of multi-stage rockets: the upper stage can generate much more usable kinetic energy than the total chemical energy of the propellants it carries.


...
Wikipedia

...