*** Welcome to piglix ***

Non-commutative algebra


In mathematics, more specifically modern algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exists a and b in R with a·bb·a. Many authors use the term noncommutative ring to refer to rings which are not necessarily commutative, and hence include commutative rings in their definition. Noncommutative algebra is the study of results applying to rings that are not required to be commutative. Many important results in the field of noncommutative algebra area apply to commutative rings as special cases.

Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise.

Some examples of rings which are not commutative follow:

Beginning with division rings arising from geometry, the study of noncommutative rings has grown into a major area of modern algebra. The theory and exposition of noncommutative rings was expanded and refined in the 19th and 20th centuries by numerous authors. An incomplete list of such contributors includes E. Artin, Richard Brauer, P. M. Cohn, W. R. Hamilton, I. N. Herstein, N. Jacobson, K. Morita, E. Noether, Ø. Ore and others.

Because noncommutative rings are a much larger class of rings than the commutative rings, their structure and behavior is less well understood. A great deal of work has been done successfully generalizing some results from commutative rings to noncommutative rings. A major difference between rings which are and are not commutative is the necessity to separately consider right ideals and left ideals. It is common for noncommutative ring theorists to enforce a condition on one of these types of ideals while not requiring it to hold for the opposite side. For commutative rings, the left–right distinction does not exist.


...
Wikipedia

...