*** Welcome to piglix ***

Nitroglycol

Ethylene glycol dinitrate
Skeletal formula of ethylene glycol dinitrate
Ball-and-stick model of the ethylene glycol dinitrate molecule
Names
IUPAC name
1,2-dinitroxyethane
Other names
Ethylene glycol dinitrate, Glycol dinitrate, Ethylene dinitrate, Ethylene nitrate, 1,2-Bis(nitrooxy)ethane, Nitroglycol (NGc), 1,2-Ethanediol dinitrate, Dinitroglycol, EGDN, Ethane-1,2-diyl dinitrate
Identifiers
3D model (Jmol)
ChemSpider
ECHA InfoCard 100.010.058
PubChem CID
Properties
C2H4N2O6
Molar mass 152.1 g/mol
Appearance Oily, colorless to light yellow liquid
Odor odorless
Density 1.4918 g/cm3
Melting point −22.0 °C (−7.6 °F; 251.2 K)
Boiling point 197.5 °C (387.5 °F; 470.6 K)
5 g/l
Vapor pressure 0.05 mmHg (20°C)
Explosive data
Shock sensitivity Medium
Friction sensitivity Medium
Detonation velocity 8300 m/s
Hazards
Main hazards
Hazard E.svg Hazard TT.svg
R-phrases R2 R26/27/28 R33
S-phrases ((S1/2) S33 S35 S36/37 S45
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g., sodium chloride Reactivity code 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g., nitroglycerin Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 215 °C; 419 °F; 488 K
US health exposure limits (NIOSH):
PEL (Permissible)
C 0.2 ppm (1 mg/m3) [skin]
REL (Recommended)
ST 0.1 mg/m3 [skin]
IDLH (Immediate danger)
75 mg/m3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Ethylene glycol dinitrate (EGDN,NGc), also known as nitroglycol, is a chemical compound a colorless, oily explosive liquid obtained by nitrating ethylene glycol. It is similar to nitroglycerin in both manufacture and properties, though it is more volatile and less viscous.

Pure EGDN was first produced by the Belgian chemist Louis Henry (1834–1913) in 1870 by dropping a small amount of ethylene glycol into a mixture of nitric and sulfuric acids cooled to 0 °C. The previous year, August Kekulé had produced EGDN by the nitration of ethylene, but this was actually contaminated with beta-nitroethyl nitrate.

Other investigators preparing NGc before publication in 1926 of Rinkenbach's work included: Champion (1871), Neff (1899) & Wieland & Sakellarios (1920), Dautriche, Hough & Oehme.

The American chemist William Henry Rinkenbach (1894–1965) prepared EGDN by nitrating purified glycol obtained by fractioning the commercial product under pressure of 40mm Hg, and at a temperature of 120°. For this 20g of middle fraction of purified glycol was gradually added to mixture of 70g nitric acid and 130g sulfuric acid, maintaining the temperature at 23°. The resulting 49g of crude product was washed with 300ml of water to obtain 39.6g of purified product. The low yield so obtained could be improved by maintaining a lower temperature and using a different nitrating acid mixture.

1) Direct Nitration of Glycol is carried out in exactly the same manner, with the same apparatus, and with the same mixed acids as nitration of glycerine. In the test nitration of anhydrous glycol (100g) with 625g of mixed acid HNO
3
40% & H
2
SO
4
60% at 10-12°, the yield was 222g and it dropped to 218g when the temp was raised to 29-30°. When 500g of mixed acid HNO
3
50% & H
2
SO
4
50% was used at 10-12°, the yield increased to 229g. In commercial nitration, the yields obtained from 100 kg anhydrous glycol and 625 kg of mixed acid containing HNO
3
41%, H
2
SO
4
58% & water 1% were 222.2 kg of NGc at nitrating temp of 10-12° and only 218.3 kg at 29-30°. This means 90.6% of theory, as compared to 93.6% with NG.


...
Wikipedia

...