*** Welcome to piglix ***

Neurites


A neurite or neuronal process refers to any projection from the cell body of a neuron. This projection can be either an axon or a dendrite. The term is frequently used when speaking of immature or developing neurons, especially of cells in culture, because it can be difficult to tell axons from dendrites before differentiation is complete.

The development of a neurite requires a complex interplay of both extracellular and intracellular signals. At every given point along a developing neurite, there are receptors detecting both positive and negative growth cues from every direction in the surrounding space. The developing neurite sums together all of these growth signals in order to determine which direction the neurite will ultimately grow towards. While not all of the growth signals are known, several have been identified and characterized. Among the known extracellular growth signals are netrin, a midline chemoattractant, and semaphorin, ephrin and collapsin, all inhibitors of neurite growth.

Young neurites are often packed with microtubule bundles, the growth of which is stimulated by neurotrophic factors, such as nerve growth factor (NGF). Tau proteins can aid in the stabilization of microtubules by binding to the microtubules, protecting them from microtubule serving proteins. Even after the microtubules have stabilized, the cytoskeleton of the neuron remains dynamic. Actin filaments retain their dynamic properties in the neurite that will become the axon in order to push the microtubules bundles outward to extend the axon. In all other neurites however, the actin filaments are stabilized by myosin. This prevents the development of multiple neurites.

The neural cell adhesion molecule N-CAM simultaneously combines with another N-CAM and a fibroblast growth factor receptor to stimulate the tyrosine kinase activity of that receptor to induce the growth of neurites.


...
Wikipedia

...