*** Welcome to piglix ***

N,N'-Dicyclohexylcarbodiimide

N,N'-Dicyclohexylcarbodiimide
Skeletal formula of dicyclohexylcarbodiimide
Ball-and-stick model
Names
IUPAC name
N,N'-dicyclohexylcarbodiimide
Other names
DCC
Identifiers
3D model (Jmol)
ChEBI
ChemSpider
ECHA InfoCard 100.007.914
PubChem CID
RTECS number FF2160000
Properties
C13H22N2
Molar mass 206.33 g·mol−1
Appearance white crystalline powder
Density 1.325 g/cm3, solid
Melting point 34 °C (93 °F; 307 K)
Boiling point 122 °C (252 °F; 395 K) (at 6 mmHg)
not soluble
Hazards
R-phrases R22 R24 R41 R43
S-phrases S24 S26 S37/39 S45
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity (yellow): no hazard code Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 113 °C (235 °F; 386 K)
Related compounds
Related carbodiimides
DIC,EDC
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

N,N'-Dicyclohexylcarbodiimide is an organic compound with the chemical formula C13H22N2 whose primary use is to couple amino acids during artificial peptide synthesis. Under standard conditions, it exists in the form of white crystals with a heavy, sweet odor. The low melting point of this material allows it to be melted for easy handling. It is highly soluble in dichloromethane, tetrahydrofuran, acetonitrile and dimethylformamide, but insoluble in water. The compound is often abbreviated as DCC or DCCD.

The C-N=C=N-C core of carbodiimides (N=C=N) is linear, being related to the structure of allene. Three principal resonance structures describe carbodiimides:

The N=C=N moiety gives characteristic IR spectroscopic signature at 2117 cm−1. The 15N NMR spectrum shows a characteristic shift of 275.0 ppm upfield of nitric acid and the 13C NMR spectrum features a peak at about 139 ppm downfield from TMS.

Of the several syntheses of DCC, Pri-Bara et al. use palladium acetate, iodine, and oxygen to couple cyclohexyl amine and cyclohexyl isocyanide. Yields of up to 67% have been achieved using this route:

Tang et al. condense two isocyanates using the catalyst OP(MeNCH2CH2)3N in yields of 92%:

DCC has also been prepared from dicyclohexylurea using a phase transfer catalyst by Jaszay et al. The disubstituted urea, arenesulfonyl chloride, and potassium carbonate react in toluene in the presence of benzyl tetraethylammonium chloride to give DCC in 50% yield.

DCC is a dehydrating agent for the preparation of amides, ketones, nitriles. In these reactions, DCC hydrates to form dicyclohexylurea (DCU), a compound that is nearly insoluble in most organic solvents and insoluble in water. The majority of the DCU is thus readily removed by filtration, although the last traces can be difficult to eliminate from non-polar products. DCC can also be used to invert secondary alcohols.


...
Wikipedia

...