Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis which asserts that the set of critical values (that is, the image of the set of critical points) of a smooth function f from one Euclidean space or manifold to another is a null set, i.e., it has Lebesgue measure 0. This makes the set of critical values "small" in the sense of a generic property. The theorem is named for Anthony Morse and Arthur Sard.
More explicitly (Sternberg (1964, Theorem II.3.1); Sard (1942)), let
be , (that is, times continuously differentiable), where . Let denote the critical set of which is the set of points at which the Jacobian matrix of has rank . Then the image has Lebesgue measure 0 in .