*** Welcome to piglix ***

Generic property


In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : MN is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f." (This is by Sard's theorem.)

There are many different notions of "generic" (what is meant by "almost all") in mathematics, with corresponding dual notions of "almost none" (negligible set); the two main classes are:

In measure theory, a generic property is one that holds almost everywhere. The dual concept is a null set, that is, a set of measure zero.

In probability, a generic property is an event that occurs almost surely, meaning that it occurs with probability 1. For example, the law of large numbers states that the sample mean converges almost surely to the population mean. This is the definition in the measure theory case specialized to a probability space.

In discrete mathematics, one uses the term almost all to mean cofinite (all but finitely many), cocountable (all but countably many), for sufficiently large numbers, or, sometimes, asymptotically almost surely. The concept is particularly important in the study of random graphs.


...
Wikipedia

...