*** Welcome to piglix ***

Mitchell embedding theorem


Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete categories of modules. This allows one to use element-wise diagram chasing proofs in these categories.

The precise statement is as follows: if A is a small abelian category, then there exists a ring R (with 1, not necessarily commutative) and a full, faithful and exact functor F: AR-Mod (where the latter denotes the category of all left R-modules).

The functor F yields an equivalence between A and a full subcategory of R-Mod in such a way that kernels and cokernels computed in A correspond to the ordinary kernels and cokernels computed in R-Mod. Such an equivalence is necessarily additive. The theorem thus essentially says that the objects of A can be thought of as R-modules, and the morphisms as R-linear maps, with kernels, cokernels, exact sequences and sums of morphisms being determined as in the case of modules. However, projective and injective objects in A do not necessarily correspond to projective and injective R-modules.

Let be the category of left exact functors from the abelian category to the category of abelian groups . First we construct a contravariant embedding by for all , where is the covariant hom-functor, . The Yoneda Lemma states that is fully faithful and we also get the left exactness of very easily because is already left exact. The proof of the right exactness of is harder and can be read in Swan, Lecture Notes in Mathematics 76.


...
Wikipedia

...