In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
A concrete category, when defined without reference to the notion of a category, consists of a class of objects, each equipped with an underlying set; and for any two objects A and B a set of functions, called morphisms, from the underlying set of A to the underlying set of B. Furthermore, for every object A, the identity function on the underlying set of A must be a morphism from A to A, and the composition of a morphism from A to B followed by a morphism from B to C must be a morphism from A to C.
A concrete category is a pair (C,U) such that
The functor U is to be thought of as a forgetful functor, which assigns to every object of C its "underlying set", and to every morphism in C its "underlying function".
A category C is concretizable if there exists a concrete category (C,U); i.e., if there exists a faithful functor U:C → Set. All small categories are concretizable: define U so that its object part maps each object b of C to the set of all morphisms of C whose codomain is b (i.e. all morphisms of the form f: a → b for any object a of C), and its morphism part maps each morphism g: b → c of C to the function U(g): U(b) → U(c) which maps each member f: a → b of U(b) to the composition gf: a → c, a member of U(c). (Item 6 under Further examples expresses the same U in less elementary language via presheaves.) The Counter-examples section exhibits two large categories that are not concretizable.