*** Welcome to piglix ***

Abelian category


In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories, for example they are regular and they satisfy the snake lemma. The class of Abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an Abelian category, or the category of functors from a small category to an Abelian category are Abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

A category is abelian if

This definition is equivalent to the following "piecemeal" definition:

Note that the enriched structure on hom-sets is a consequence of the three axioms of the first definition. This highlights the foundational relevance of the category of Abelian groups in the theory and its canonical nature.


...
Wikipedia

...