In acoustics, microbaroms, also known as the "voice of the sea", are a class of atmospheric infrasonic waves generated in marine storms by a non-linear interaction of ocean surface waves with the atmosphere. They typically have narrow-band, nearly sinusoidal waveforms with amplitudes up to a few microbars, and wave periods near 5 seconds (0.2 hertz). Due to low atmospheric absorption at these low frequencies, microbaroms can propagate thousands of kilometers in the atmosphere, and can be readily detected by widely separated instruments on the Earth's surface.
Microbaroms are a significant noise source that can potentially interfere with the detection of infrasound from nuclear explosions that is a goal of the International Monitoring System organized under the Comprehensive Nuclear-Test-Ban Treaty (which has not entered into force). It is a particular problem for detecting low-yield tests in the one-kiloton range because the frequency spectra overlap.
Microbaroms were first described in 1939 by American seismologists Hugo Benioff and Beno Gutenberg at the California Institute of Technology at Pasadena, based on observations from an electromagnetic microbarograph, consisting of a wooden box with a low-frequency loudspeaker mounted on top. They noted their similarity to microseisms observed on seismographs, and correctly hypothesized that these signals were the result of low pressure systems in the Northeast Pacific Ocean. In 1945, Swiss geoscientist L. Saxer showed the first relationship of microbaroms with wave height in ocean storms and microbarom amplitudes. Eric S. Posmentier published his "theory of microbaroms" in 1967 based on the oscillations of the center of gravity of the air above the Ocean surface on which the standing waves appear, which fits well with observed data, including the doubling of the ocean wave frequency in the observed microbarom frequency.