Infrasound, sometimes referred to as low-frequency sound, is sound that is lower in frequency than 20 Hz or cycles per second, the "normal" limit of human hearing. Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. The ear is the primary organ for sensing infrasound, but at higher intensities it is possible to feel infrasound vibrations in various parts of the body.
The study of such sound waves is sometimes referred to as infrasonics, covering sounds beneath 20 Hz down to 0.1Hz and rarely to 0.001 Hz. This frequency range is utilized for monitoring earthquakes, charting rock and petroleum formations below the earth, and also in and seismocardiography to study the mechanics of the heart.
Infrasound is characterized by an ability to cover long distances and get around obstacles with little dissipation. In music, low-frequency sounds, including near-infrasound, can be produced using acoustic waveguide methods, such as a large pipe organ or, for reproduction, exotic loudspeaker designs such as transmission line, rotary woofer, or traditional subwoofer designs. Subwoofers designed to produce infrasound are capable of sound reproduction an octave or more below that of most commercially available subwoofers, and are often about 10 times the size.
Infrasound was used by the Allies of World War I to locate artillery. One of the pioneers in infrasonic research was French scientist Vladimir Gavreau. His interest in infrasonic waves first came about in his laboratory during the 1960s, when he and his laboratory assistants experienced shaking laboratory equipment and pain in the eardrums, but no audible sound was picked up on his microphones. He concluded it was infrasound caused by a large fan and duct system, and soon got to work preparing tests in the laboratories. One of his experiments was an infrasonic whistle, an oversized organ pipe.