*** Welcome to piglix ***

Methylglyoxal pathway


The methylglyoxal pathway is an offshoot of glycolysis found in some prokaryotes, which converts glucose into methylglyoxal and then into pyruvate. However unlike glycolysis the methylglyoxal pathway does not produce adenosine triphosphate, ATP. The pathway is named after the substrate methylglyoxal which has three carbons and two carbonyl groups located on the 1st carbon and one on the 2nd carbon. Methylglyoxal is, however, a reactive aldehyde that is very toxic to cells, it can inhibit growth in E. coli at milimolar concentrations. The excessive intake of glucose by a cell is the most important process for the activation of the methylglyoxal pathway.

The methylglyoxal pathway is activated by the increased intercellular uptake of carbon containing molecules such as glucose, glucose-6-phosphate, lactate, or glycerol. Methylglyoxal is formed from dihydroxyacetone phosphate (DHAP) by the enzyme methylglyoxal synthase, giving off a phosphate group.

Methylglyoxal is then converted into two different products, either D-lactate, and L-lactate. Methylglyoxal reductase and aldehyde dehydrogenase convert methylglyoxal into lactaldehyde and, eventually, L-lactate. If methylglyoxal enters the glyoxylase pathway, it is converted into lactoylguatathione and eventually D-lactate. Both D-lactate, and L-lactate are then converted into pyruvate. The pyruvate that is created most often goes on to enter the Krebs cycle (Weber 711-13).


...
Wikipedia

...