*** Welcome to piglix ***

Mechanical explanations of gravitation


Mechanical explanations of gravitation (or kinetic theories of gravitation) are attempts to explain the action of gravity by aid of basic mechanical processes, such as pressure forces caused by pushes, without the use of any action at a distance. These theories were developed from the 16th until the 19th century in connection with the aether. However, such models are no longer regarded as viable theories within the mainstream scientific community and general relativity is now the standard model to describe gravitation without the use of actions at a distance. Modern "quantum gravity" hypotheses also attempt to describe gravity by more fundamental processes such as particle fields, but they are not based on classical mechanics.

This theory is probably the best-known mechanical explanation, and was developed for the first time by Nicolas Fatio de Duillier in 1690, and re-invented, among others, by Georges-Louis Le Sage (1748), Lord Kelvin (1872), and Hendrik Lorentz (1900), and criticized by James Clerk Maxwell (1875), and Henri Poincaré (1908).

The theory posits that the force of gravity is the result of tiny particles or waves moving at high speed in all directions, throughout the universe. The intensity of the flux of particles is assumed to be the same in all directions, so an isolated object A is struck equally from all sides, resulting in only an inward-directed pressure but no net directional force. With a second object B present, however, a fraction of the particles that would otherwise have struck A from the direction of B is intercepted, so B works as a shield, so-to-speak—that is, from the direction of B, A will be struck by fewer particles than from the opposite direction. Likewise, B will be struck by fewer particles from the direction of A than from the opposite direction. One can say that A and B are "shadowing" each other, and the two bodies are pushed toward each other by the resulting imbalance of forces.


...
Wikipedia

...