*** Welcome to piglix ***

Maximum operating depth


In underwater diving activities such as saturation diving, technical diving and nitrox diving, the maximum operating depth (MOD) of a breathing gas is the depth below which the partial pressure of oxygen (pO2) of the gas mix exceeds an acceptable limit. This limit is based on risk of central nervous system oxygen toxicity, and is somewhat arbitrary, and varies depending on the diver training agency or Code of Practice, the level of underwater exertion planned and the planned duration of the dive, but is normally in the range of 1.2 to 1.6 bar.

The MOD is significant when planning dives using gases such as heliox, nitrox and trimix because the proportion of oxygen in the mix determines a maximum depth for breathing that gas at an acceptable risk. There is a risk of acute oxygen toxicity if the MOD is exceeded. The tables below show MODs for a selection of oxygen mixes. Atmospheric air contains approximately 21% oxygen, and has an MOD calculated by the same method.

Acute, or central nervous system oxygen toxicity is a time variable response to the partial pressure exposure history of the diver and is both complex and not fully understood.

Central nervous system oxygen toxicity manifests as symptoms such as visual changes (especially tunnel vision), ringing in the ears (tinnitus), nausea, twitching (especially of the face), behavioural changes (irritability, anxiety, confusion), and dizziness. This may be followed by a tonic–clonic seizure consisting of two phases: intense muscle contraction occurs for several seconds (tonic phase); followed by rapid spasms of alternate muscle relaxation and contraction producing convulsive jerking (clonic phase). The seizure ends with a period of unconsciousness (the postictal state). The onset of seizure depends upon the partial pressure of oxygen in the breathing gas and exposure duration. However, exposure time before onset is unpredictable, as tests have shown a wide variation, both amongst individuals, and in the same individual from day to day. In addition, many external factors, such as underwater immersion, exposure to cold, and exercise will decrease the time to onset of central nervous system symptoms. Decrease of tolerance is closely linked to retention of carbon dioxide. Other factors, such as darkness and caffeine, increase tolerance in test animals, but these effects have not been proven in humans.


...
Wikipedia

...