*** Welcome to piglix ***

Maximum entropy method


The principle of maximum entropy states that, subject to precisely stated prior data (such as a proposition that expresses testable information), the probability distribution which best represents the current state of knowledge is the one with largest entropy.

Another way of stating this: Take precisely stated prior data or testable information about a probability distribution function. Consider the set of all trial probability distributions that would encode the prior data. According to this principle, the distribution with maximal information entropy is the proper one.

The principle was first expounded by E. T. Jaynes in two papers in 1957 where he emphasized a natural correspondence between statistical mechanics and information theory. In particular, Jaynes offered a new and very general rationale why the Gibbsian method of statistical mechanics works. He argued that the entropy of statistical mechanics and the information entropy of information theory are principally the same thing. Consequently, statistical mechanics should be seen just as a particular application of a general tool of logical inference and information theory.

In most practical cases, the stated prior data or testable information is given by a set of conserved quantities (average values of some moment functions), associated with the probability distribution in question. This is the way the maximum entropy principle is most often used in statistical thermodynamics. Another possibility is to prescribe some symmetries of the probability distribution. The equivalence between conserved quantities and corresponding symmetry groups implies a similar equivalence for these two ways of specifying the testable information in the maximum entropy method.


...
Wikipedia

...