*** Welcome to piglix ***

Symmetry groups


In group theory, the symmetry group of an object (image, signal, etc.) is the group of all transformations under which the object is invariant with composition as the group operation. For a space with a metric, it is a subgroup of the isometry group of the space concerned. If not stated otherwise, this article considers symmetry groups in Euclidean geometry, but the concept may also be studied in more general contexts as expanded below.

The "objects" may be geometric figures, images, and patterns, such as a wallpaper pattern. The definition can be made more precise by specifying what is meant by image or pattern, e.g., a function of position with values in a set of colors. For symmetry of physical objects, one may also want to take their physical composition into account. The group of isometries of space induces a group action on objects in it.

The symmetry group is sometimes also called full symmetry group in order to emphasize that it includes the orientation-reversing isometries (like reflections, glide reflections and improper rotations) under which the figure is invariant. The subgroup of orientation-preserving isometries (i.e. translations, rotations, and compositions of these) that leave the figure invariant is called its proper symmetry group. The proper symmetry group of an object is equal to its full symmetry group if and only if the object is chiral (and thus there are no orientation-reversing isometries under which it is invariant).


...
Wikipedia

...