In mathematics, the isometry group of a metric space is the set of all bijective isometries (i.e. bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the identity function.
A (generalized) isometry on a pseudo-Euclidean space preserves magnitude.
Every isometry group of a metric space is a subgroup of isometries. It represents in most cases a possible set of symmetries of objects/figures in the space, or functions defined on the space. See symmetry group.
A discrete isometry group is an isometry group such that for every point of the space the set of images of the point under the isometries is a discrete set.