*** Welcome to piglix ***

Max Planck Institute for Solar System Research

Max Planck Institute for Solar System Research
Logo-mps.png
Abbreviation MPS
Formation 1934 (founded as the Luftwaffe test grounds in Rechlin/Mecklenburg) / July 1, 2004 (renamed to the Max Planck Institute for Solar System Research)
Type Research Institute
Location
Managing Director
Prof. Ulrich R. Christensen
Parent organization
Max Planck Society
Affiliations Max Planck Institute for Solar System Research / Max-Planck-Institut für Sonnensystemforschung
Staff
410
Website www.mps.mpg.de

The Max Planck Institute for Solar System Research (abbreviation: MPS; German: Max-Planck-Institut für Sonnensystemforschung) is a research institute in astronomy and astrophysics located in Göttingen, Germany, where it relocated in February 2014 from the nearby village of Lindau. The exploration of the solar system is the central theme for research done at this institute.

MPS is a part of the Max Planck Society, which operates 80 research facilities in Germany.

Over the last five years, members of the Institute have each year published about 270 articles in international journals and books and given 360 conference presentations.

MPS is organised in three departments:

In addition, since 2002 there is also an International Max Planck Research School. Subjects of research at the Institute are the various objects within the solar system. A major area of study concerns the Sun, its atmosphere, the interplanetary medium as influenced by the solar wind, as well as the impact of solar particles and radiation on the planets. The second area of research involves the interiors, surfaces, atmospheres, ionospheres, and magnetospheres of the planets and their moons, as well as of comets and asteroids. A further essential part of the activities at the Institute is the development and construction of instruments for space missions. The analysis and interpretation of the acquired datasets are accompanied by intensive theoretical work. Physical models are proposed and then tested and further developed with the aid of computer simulations.

The researchers at the MPS are studying the complete range of dynamic and often spectacular processes occurring on the Sun – from the interior to the outer heliosphere. At the heart of this research is the magnetic field, which plays a decisive role in these processes. It is generated by gas currents in the interior of the Sun and causes, among other things, dark spots on the surface. Answers to the following questions are being sought: Why does the magnetic field change with an eleven-year cycle? How does the magnetic field produce the various structures on the Sun? How is the corona heated to many millions of degrees? Instruments developed by MPS aboard the space- craft SOHO and Ulysses have provided fundamentally new insights: Measurements of the ultraviolet spectrometer SUMER on board SOHO played a decisive role in recognising the significance of the magnetic field for dynamic processes and Ulysses measured the three-dimensional structure of the solar wind for the first time. Another important research topic at the "The Sun and Heliosphere" department is the influence on the Earth due to the Sun’s variable activity. Scientists are working intensively on the project STEREO, in which two identical spacecraft trace disturbances from the Sun to the Earth from different observational points, permitting predictions of potentially dangerous events. The physical processes involved in the origin and development of magnetic fields on the Sun take place on very small scales and therefore require measurements with very high spatial resolution. The balloon-borne telescope Sunrise, built under Institute leadership and flown in June 2009, was able to make out structures on the Sun’s surface as small as 100 kilometers. Future projects will stress research into the physical causes of the Sun’s variations. The ambitious Solar Orbiter Mission, based on a suggestion from the Institute, will see a probe approach our star to within a fifth of the Earth-Sun distance in order to investigate the magnetic field and its effects in the various layers of the solar atmosphere.


...
Wikipedia

...