*** Welcome to piglix ***

Max Joseph von Pettenkofer


Max Joseph Pettenkofer, ennobled in 1883 as Max Joseph von Pettenkofer (3 December 1818 – 10 February 1901) was a Bavarian chemist and hygienist. He is known for his work in practical hygiene, as an apostle of good water, fresh air and proper sewage disposal. He was further known as an anticontagionist, a school of thought, named later on, that did not believe in the, at the time novel concept, that bacteria were the main cause of disease. In particular he argued in favor of a variety of conditions collectively contributing to the incidence of disease including: personal state of health, the fermentation of environmental ground water, and also the germ in question. He was most well known for his establishment of hygiene as an experimental science and also was a strong proponent for the founding of hygiene institutes in Germany. His work served as an example which other institutes around the world emulated.

Pettenkofer was born in Lichtenheim, near Neuburg an der Donau, now part of Weichering. He was a nephew of Franz Xaver (1783–1850), who from 1823 was a surgeon and apothecary to the Bavarian court and was the author of some chemical investigations on the vegetable alkaloids. After a falling out with a relative he was staying with he briefly entered the theater. He returned to his family to marry Helene Pettenkofer. A stipulation of his marriage was that he pursue another career and was advised to pursue medicine. He attended the Wilhelmsgymnasium, in Munich, then studied pharmacy and medicine at the Ludwig Maximilian University, where he graduated M.D. in 1845.

After working under Liebig at Gießen, Pettenkofer was appointed chemist to the Munich mint in 1845. Two years later he was chosen as an extraordinary professor of chemistry at the medical faculty. In 1853 he was made a full professor and in 1865 he also became a professor of hygiene. In his earlier years he devoted himself to chemistry, both theoretical and applied, publishing papers on a wide range of topics. One of his first projects and subsequent publications was in the separation of gold, silver, and platinum. This work derived from his position at the Munich mint and was centered around minimizing the costs of currency conversion by separating the precious metals from one another. The purer elements could then be utilized in other applications. Later in his career he continued published and spoke about the numerical relations between the atomic masses of analogous elements. His theories were early in the development of the Periodic Table. He rejected the current theory of triads and expanded the connections between the elements to larger groupings. He argued that the weights of different elements in a group were separated by multiples of a certain number that varied based upon the group. His work in this area was later cited by Dmitri Mendeleev in his construction of the Periodic Table of Elements. He continued his publications in a wide variety of other fields as well including: the formation of aventurine glass, the manufacture of illuminating gas from wood, the preservation of oil paintings, and an improved process for cement production among other things. The color-forming reaction known by his name for the detection of bile acids was published in 1844. In his widely used method for the quantitative determination of carbonic acid the gaseous mixture is shaken up with baryta or limewater of known strength and the change in alkalinity ascertained by means of oxalic acid. He further provided the experimental proof that the mysterious haematinum of ancient times was in fact a copper-colored glass.


...
Wikipedia

...