*** Welcome to piglix ***

Atomic mass


The atomic mass (ma) is the mass of an atom. It is commonly expressed in unified atomic mass units (u) where by international agreement, 1 unified atomic mass unit is defined as 1/12 of the mass of a single carbon-12 atom (at rest). For atoms, the protons and neutrons of the nucleus account for almost all of the mass, and the atomic mass measured in u has nearly the same value as the mass number.

When divided by unified atomic mass units or daltons to form a pure number ratio, the atomic mass of an atom becomes a dimensionless number called the relative isotopic mass (see section below). Thus, the atomic mass of a carbon-12 atom is 12 u or 12 daltons (Da), but the relative isotopic mass of a carbon-12 atom is simply 12.

The atomic mass or relative isotopic mass refers to the mass of a single particle, and is fundamentally different from the quantities elemental atomic weight (also called "relative atomic mass") and standard atomic weight, both of which refer to averages (mathematical means) of naturally occurring atomic mass values for samples of elements. Most elements have more than one stable nuclide; for those elements, such an average depends on the mix of nuclides present, which may vary to some limited extent depending on the source of the sample, as each nuclide has a different mass. (However, a typical value can be established, which is called the standard atomic weight.) By contrast, atomic mass figures refer to an individual particle species: as atoms of the same species are identical, atomic mass values are expected to have no intrinsic variance at all. Atomic mass figures are thus commonly reported to many more significant figures than atomic weights. Standard atomic weight is related to atomic mass by the abundance ranking of isotopes for each element. It is usually about the same value as the atomic mass of the most abundant isotope, other than what looks like (but is not actually) a rounding difference.


...
Wikipedia

...