*** Welcome to piglix ***

Mallows's Cp


In statistics, Mallows's Cp, named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares. It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors. A small value of Cp means that the model is relatively precise.

Mallows's Cp has been shown to be equivalent to Akaike information criterion in the special case of Gaussian linear regression.

Mallows's Cp addresses the issue of overfitting, in which model selection statistics such as the residual sum of squares always get smaller as more variables are added to a model. Thus, if we aim to select the model giving the smallest residual sum of squares, the model including all variables would always be selected. Instead, the Cp statistic calculated on a sample of data estimates the mean squared prediction error (MSPE) as its population target

where is the fitted value from the regression model for the jth case, E(Yj | Xj) is the expected value for the jth case, and σ2 is the error variance (assumed constant across the cases). The MSPE will not automatically get smaller as more variables are added. The optimum model under this criterion is a compromise influenced by the sample size, the effect sizes of the different predictors, and the degree of collinearity between them.


...
Wikipedia

...