*** Welcome to piglix ***

Effect size


In statistics, an effect size is a quantitative measure of the strength of a phenomenon. Examples of effect sizes are the correlation between two variables, the regression coefficient in a regression, the mean difference, or even the risk with which something happens, such as how many people survive after a heart attack for every one person that does not survive. For each type of effect size, a larger absolute value always indicates a stronger effect. Effect sizes complement statistical hypothesis testing, and play an important role in power analyses, sample size planning, and in meta-analyses. They are the first item (magnitude) in the MAGIC criteria for evaluating the strength of a statistical claim.

Especially in meta-analysis, where the purpose is to combine multiple effect sizes, the standard error (S.E.) of the effect size is of critical importance. The S.E. of the effect size is used to weigh effect sizes when combining studies, so that large studies are considered more important than small studies in the analysis. The S.E. of the effect size is calculated differently for each type of effect size, but generally only requires knowing the study's sample size (N), or the number of observations in each group (n's).

Reporting effect sizes is considered good practice when presenting empirical research findings in many fields. The reporting of effect sizes facilitates the interpretation of the substantive, as opposed to the statistical, significance of a research result. Effect sizes are particularly prominent in social and medical research. Relative and absolute measures of effect size convey different information, and can be used complementarily. A prominent task force in the psychology research community made the following recommendation:

Always present effect sizes for primary outcomes...If the units of measurement are meaningful on a practical level (e.g., number of cigarettes smoked per day), then we usually prefer an unstandardized measure (regression coefficient or mean difference) to a standardized measure (r or d).

The term effect size can refer to the value of a statistic calculated from a sample of data, the value of a parameter of a hypothetical statistical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Conventions for distinguishing sample from population effect sizes follow standard statistical practices — one common approach is to use Greek letters like ρ to denote population parameters and Latin letters like r to denote the corresponding statistic; alternatively, a "hat" can be placed over the population parameter to denote the statistic, e.g. with being the estimate of the parameter .


...
Wikipedia

...