*** Welcome to piglix ***

Goodness of fit


The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-squared test). In the analysis of variance, one of the components into which the variance is partitioned may be a lack-of-fit sum of squares.

In assessing whether a given distribution is suited to a data-set, the following tests and their underlying measures of fit can be used:

In regression analysis, the following topics relate to goodness of fit:

The following are examples that arise in the context of categorical data.

Pearson's chi-squared test uses a measure of goodness of fit which is the sum of differences between observed and expected outcome frequencies (that is, counts of observations), each squared and divided by the expectation:

where:

The expected frequency is calculated by:

where:

The resulting value can be compared to the chi-squared distribution to determine the goodness of fit. In order to determine the degrees of freedom of the chi-squared distribution, one takes the total number of observed frequencies and subtracts the number of estimated parameters. The test statistic follows, approximately, a chi-square distribution with (kc) degrees of freedom where k is the number of non-empty cells and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution.


...
Wikipedia

...