Probability density function
|
|
Cumulative distribution function
|
|
Parameters |
location (real) scale (real) |
---|---|
Support | |
CDF | |
Mean | |
Median | |
Mode | |
Variance | |
Skewness | |
Ex. kurtosis | |
Entropy | |
MGF | |
CF |
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together back-to-back, although the term 'double exponential distribution' is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.
A random variable has a distribution if its probability density function is
Here, is a location parameter and , which is sometimes referred to as the diversity, is a scale parameter. If and , the positive half-line is exactly an exponential distribution scaled by 1/2.