In mathematics, a Killing vector field (often just Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point on an object the same distance in the direction of the Killing vector field will not distort distances on the object.
Specifically, a vector field X is a Killing field if the Lie derivative with respect to X of the metric g vanishes:
In terms of the Levi-Civita connection, this is
for all vectors Y and Z. In local coordinates, this amounts to the Killing equation
This condition is expressed in covariant form. Therefore, it is sufficient to establish it in a preferred coordinate system in order to have it hold in all coordinate systems.
A Killing field is determined uniquely by a vector at some point and its gradient (i.e. all covariant derivatives of the field at the point).
The Lie bracket of two Killing fields is still a Killing field. The Killing fields on a manifold M thus form a Lie subalgebra of vector fields on M. This is the Lie algebra of the isometry group of the manifold if M is complete.