*** Welcome to piglix ***

Covariant derivative


In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean derivative along a tangent vector onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

This article presents an introduction to the covariant derivative of a vector field with respect to a vector field, both in a coordinate free language and using a local coordinate system and the traditional index notation. The covariant derivative of a tensor field is presented as an extension of the same concept. The covariant derivative generalizes straightforwardly to a notion of differentiation associated to a connection on a vector bundle, also known as a Koszul connection.

Historically, at the turn of the 20th century, the covariant derivative was introduced by Gregorio Ricci-Curbastro and Tullio Levi-Civita in the theory of Riemannian and pseudo-Riemannian geometry. Ricci and Levi-Civita (following ideas of Elwin Bruno Christoffel) observed that the Christoffel symbols used to define the curvature could also provide a notion of differentiation which generalized the classical directional derivative of vector fields on a manifold. This new derivative – the Levi-Civita connection – was covariant in the sense that it satisfied Riemann's requirement that objects in geometry should be independent of their description in a particular coordinate system.


...
Wikipedia

...