*** Welcome to piglix ***

Kernel (algebra)


In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

The definition of kernel takes various forms in various contexts. But in all of them, the kernel of a homomorphism is trivial (in a sense relevant to that context) if and only if the homomorphism is injective. The fundamental theorem on homomorphisms (or first isomorphism theorem) is a theorem, again taking various forms, that applies to the quotient algebra defined by the kernel.

In this article, we first survey kernels for some important types of algebraic structures; then we give general definitions from universal algebra for generic algebraic structures.

Let V and W be vector spaces (or more generally modules) and let T be a linear map from V to W. If 0W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0W. The kernel is usually denoted as ker T, or some variation thereof:


...
Wikipedia

...