*** Welcome to piglix ***

Kalah

Kalah
Ranks Two
Sowing Single lap
Region United States, Germany

Kalah, also called Kalaha or Mancala, is a game in the mancala family imported in the United States by William Julius Champion, Jr. in 1940. This game is sometimes also called "Kalahari", possibly by false etymology from the Kalahari desert in Namibia.

As the most popular and commercially available variant of mancala in the West, Kalah is also sometimes referred to as Warri or Awari, although those names more properly refer to the game Oware.

A solved game for most of its variations, with first-player win with perfect play. The Pie rule can be used to balance the first-player's advantage.

Example turn

The player begins sowing from the highlighted house.

The last seed falls in the store, so the player receives an extra move.

The last seed falls in an empty house on the player's side. The player collects the highlighted seeds from both his house and the opposite house of his opponent and will move them to the store.

The game provides a Kalah board and a number of seeds or counters. The board has 12 small pits, called houses, on each side; and a big pit, called an end zone, at each end. The object of the game is to capture more seeds than one's opponent.

It is possible for the game to end in a draw.

Mark Rawlings has written a computer program to extensively analyze both the "standard" version of Kalah and the "empty capture" version, which is the primary variant. The analysis was made possible by the creation of the largest endgame databases ever made for Kalah. They include the perfect play result of all 38,902,940,896 positions with 34 or fewer seeds. In 2015, for the first time ever, each of the initial moves for the standard version of Kalah(6,4) and Kalah(6,5) have been quantified: Kalah(6,4) is a proven win by 8 for the first player and Kalah(6,5) is a proven win by 10 for the first player. In addition, Kalah(6,6) with the standard rules has been proven to be at least a win by 4. Further analysis of Kalah(6,6) with the standard rules is ongoing.

For the "empty capture" version, Geoffrey Irving and Jeroen Donkers (2000) proved that Kalah(6,4) is a win by 10 for the first player with perfect play, and Kalah(6,5) is a win by 12 for the first player with perfect play. Anders Carstensen (2011) proved that Kalah(6,6) was a win for the first player. Mark Rawlings (2015) has extended these "empty capture" results by fully quantifying the initial moves for Kalah(6,4), Kalah(6,5), and Kalah(6,6). With searches totaling 106 days and over 55 trillion nodes, he has proven that Kalah(6,6) is a win by 2 for the first player with perfect play. This was a surprising result, given that the "4-seed" and "5-seed" variations are wins by 10 and 12, respectively. Kalah(6,6) is extremely deep and complex when compared to the 4-seed and 5-seed variations, which can now be solved in a fraction of a second and less than a minute, respectively.


...
Wikipedia

...