|
|||
Names | |||
---|---|---|---|
IUPAC name
2,3-dihydro-1H-isoindole
|
|||
Identifiers | |||
3D model (Jmol)
|
|||
ChemSpider | |||
ECHA InfoCard | 100.156.955 | ||
PubChem CID
|
|||
|
|||
|
|||
Properties | |||
C8H9N | |||
Molar mass | 119.17 g·mol−1 | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
what is ?) | (|||
Infobox references | |||
Isoindoline is a heterocyclic organic compound with the molecular formula C8H9N. The parent compound has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing ring. The compound's structure is similar to indoline except that the nitrogen atom is in the 2 position instead of the 1 position of the five-membered ring. Isoindoline itself is not commonly encountered, but several derivatives are found in nature and some synthetic derivatives are commercially valuable drugs, e.g. pazinaclone.
1-Substituted isoindolines and isoindolinones are chiral. Isoindolylcarboxylic acid and 1,3-disubstituted isoindolines are constituents of some pharmaceuticals and natural products. Isoindolines can be prepared by 1,2-addition of a nucleophile onto a bifunctional ε-benzoiminoenoates followed by intramolecular aza-Michael reaction. Another route involves [3+2] cycloaddition of the azomethine ylides (e.g. (CH2)2NR) to quinone in the presence of suitable catalysts. These methods have also been adapted to give chiral derivatives.