An integrated gasification combined cycle (IGCC) is a technology that uses a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the power generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency compared to conventional pulverized coal combustion.
Coal can be found in abundance in the USA and many other countries and its price has remained relatively constant in recent years. Of the traditional fossil fuels - oil, coal, and natural gas - coal is used as a feedstock for 40% of global electricity generation. Fossil fuel consumption and its contribution to large-scale, detrimental environmental changes is becoming a pressing issue, especially in light of the Paris Agreement. In particular, coal contains more CO2 per BTU than oil or natural gas and is responsible for 43% of CO2 emissions from fuel combustion. Thus, the lower emissions that IGCC technology allows through gasification and pre-combustion carbon capture is crucial to addressing aforementioned concerns.
Below is a schematic flow diagram of an IGCC plant:
The gasification process can produce syngas from a wide variety of carbon-containing feedstocks, such as high-sulfur coal, heavy petroleum residues and biomass.