Inferno 4th Edition
|
|
Developer | Bell Labs, Vita Nuova |
---|---|
Written in | C,Limbo |
Working state | Current |
Source model | Open-source |
Initial release | 1996 |
Latest release | 4th Edition / March 28, 2015 |
Platforms | ARM, PA-RISC, MIPS, PowerPC, SPARC, x86 |
Kernel type | Virtual machine (Dis) |
License | GPL, LGPL, MIT |
Preceded by | Plan 9 |
Official website | www |
Inferno is a distributed operating system started at Bell Labs, but is now developed and maintained by Vita Nuova Holdings as free software. Inferno was based on the experience gained with Plan 9 from Bell Labs, and the further research of Bell Labs into operating systems, languages, on-the-fly compilers, graphics, security, networking and portability. The name of the operating system and many of its associated programs, as well as that of the current company, were inspired by Dante Alighieri's Divine Comedy.
Inferno programs are portable across a broad mix of hardware, networks, and environments. It defines a virtual machine, known as Dis, that can be implemented on any real machine, provides Limbo, a type-safe language that is compiled to portable byte code, and, more significantly, it includes a virtual operating system that supplies the same interfaces whether Inferno runs natively on hardware or runs as a user program on top of another operating system.
A called is applied uniformly to access both local and remote resources, which programs use by calling standard file operations, open, read, write, and close. As of the fourth edition of Inferno, Styx is identical to Plan 9's newer version of its hallmark protocol, 9P2000.
Inferno was created in 1995 by members of Bell Labs' Computer Science Research division to bring ideas of Plan 9 from Bell Labs to a wider range of devices and networks. Inferno is a distributed operating system based on three basic principles drawn from Plan 9:
To handle the diversity of network environments it was intended to be used in, the designers decided a virtual machine was a necessary component of the system. This is the same conclusion of the Oak project that became Java, but arrived at independently. The Dis virtual machine is a register machine intended to closely match the architecture it runs on, as opposed to the stack machine of the Java Virtual Machine. An advantage of this approach is the relative simplicity of creating a just-in-time compiler for new architectures.