*** Welcome to piglix ***

Distributed operating system


An operating system is a software over a collection of independent, networked, communicating, and physically separate computational nodes. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node’s hardware. Second is a higher-level collection of system management components that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications.

The microkernel and the management components collection work together. They support the system’s goal of integrating multiple resources and processing functionality into an efficient and stable system. This seamless integration of individual nodes into a global system is referred to as transparency, or single system image; describing the illusion provided to users of the global system’s appearance as a single computational entity.

A distributed OS provides the essential services and functionality required of an OS but adds attributes and particular configurations to allow it to support additional requirements such as increased scale and availability. To a user, a distributed OS works in a manner similar to a single-node, monolithic operating system. That is, although it consists of multiple nodes, it appears to users and applications as a single-node.

Separating minimal system-level functionality from additional user-level modular services provides a “separation of mechanism and policy.” Mechanism and policy can be simply interpreted as "what something is done" versus "how something is done," respectively. This separation increases flexibility and scalability.

At each locale (typically a node), the kernel provides a minimally complete set of node-level utilities necessary for operating a node’s underlying hardware and resources. These mechanisms include allocation, management, and disposition of a node’s resources, processes, communication, and input/output management support functions. Within the kernel, the communications sub-system is of foremost importance for a distributed OS.


...
Wikipedia

...