*** Welcome to piglix ***

Inertial electrostatic confinement


Inertial electrostatic confinement is a branch of fusion research which uses an electric field to heat a plasma to fusion conditions. Electric fields can do work on charged particles (either ions or electrons), heating them to fusion conditions. This is typically done in a sphere, with material moving radially inward, but can also be done in a cylindrical or beam geometry. The electric field can be generated using a wire grid or a non-neutral plasma cloud.

For every volt that an ion is accelerated across, it gains 11,604 kelvins. For example, a typical magnetic confinement fusion plasma is 15 keV, or 170 megakelvin. An ion with a charge of one can reach this temperature by being accelerated across a 15,000 V drop. In fusors, the voltage drop is made with a wire cage. However high conduction losses occur in fusors because most ions fall into the cage before fusion can occur. This prevents current fusors from ever producing net power.

Mark Oliphant adapts Cockcroft and Walton's particle accelerator at the Cavendish Laboratory to create Tritium and Helium-3 by nuclear fusion.

Three researchers at LANL including Jim Tuck first explored the idea, theoretically, in a 1959 paper. The idea had been proposed by a colleague. The concept was to capture electrons inside a positive cage. The electrons would accelerate the ions to fusion conditions.

Other concepts were being developed which would later merge into the IEC field. These include the publication of the Lawson criterion by John D. Lawson in 1957 in England. This puts on minimum criteria on power plant designs which do fusion using hot Maxwellian plasma clouds. Also, work exploring how electrons behave inside the Biconic cusp, done by Harold Grad group at the Courant Institute in 1957. A biconic cusp is a device with two alike magnetic poles facing one another (i.e. north-north). Electrons and ions can be trapped between these.


...
Wikipedia

...