In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result contributing to the Riemann–Roch problem for complex algebraic varieties of all dimensions. It was the first successful generalisation of the classical Riemann–Roch theorem on Riemann surfaces to all higher dimensions, and paved the way to the Grothendieck–Hirzebruch–Riemann–Roch theorem proved about three years later.
The Hirzebruch–Riemann–Roch theorem applies to any holomorphic vector bundle E on a compact complex manifold X, to calculate the holomorphic Euler characteristic of E in sheaf cohomology, namely the alternating sum
of the dimensions as complex vector spaces.
Hirzebruch's theorem states that χ(X, E) is computable in terms of the Chern classes Cj(E) of E, and the Todd polynomials Tj in the Chern classes of the holomorphic tangent bundle of X. These all lie in the cohomology ring of X; by use of the fundamental class (or, in other words, integration over X) we can obtain numbers from classes in H2n(X). The Hirzebruch formula asserts that