In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally.
Sheaves, sheaf cohomology, and spectral sequences were invented by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp.
Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such problems. Many earlier results such as the Riemann–Roch theorem and the Hodge theorem have been generalized or understood better using sheaf cohomology.
The category of sheaves of abelian groups on a topological space X is an abelian category, and so it makes sense to ask when a morphism f: B → C of sheaves is injective (a monomorphism) or surjective (an epimorphism). One answer is that f is injective (resp. surjective) if and only if the associated homomorphism on stalks Bx → Cx is injective (resp. surjective) for every point x in X. It follows that f is injective if and only if the homomorphism B(U) → C(U) of sections over U is injective for every open set U in X. Surjectivity is more subtle, however: the morphism f is surjective if and only if for every open set U in X, every section s of C over U, and every point x in U, there is an open neighborhood V of x in U such that s restricted to V is the image of some section of B over V. (In words: every section of C lifts locally to sections of B.)