*** Welcome to piglix ***

Heat pump and refrigeration cycle


Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pumps and refrigerators. A heat pump is a machine or device that moves heat from one location (the 'source') at a lower temperature to another location (the 'sink' or 'heat sink') at a higher temperature using mechanical work or a high-temperature heat source. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink (as when warming the inside of a home on a cold day), or a "refrigerator" if the objective is to cool the heat source (as in the normal operation of a freezer). In either case, the operating principles are identical. Heat is moved from a cold place to a warm place.

According to the second law of thermodynamics heat cannot spontaneously flow from a colder location to a hotter area; work is required to achieve this. An air conditioner requires work to cool a living space, moving heat from the cooler interior (the heat source) to the warmer outdoors (the heat sink). Similarly, a refrigerator moves heat from inside the cold icebox (the heat source) to the warmer room-temperature air of the kitchen (the heat sink). The operating principle of the refrigeration cycle was described mathematically by Sadi Carnot in 1824 as a heat engine. A heat pump can be thought of as a heat engine which is operating in reverse.

Heat pump and refrigeration cycles can be classified as vapor compression, vapor absorption, gas cycle, or Stirling cycle types.

The vapor-compression cycle is used in most household refrigerators as well as in many large commercial and industrial refrigeration systems. Figure 1 provides a schematic diagram of the components of a typical vapor-compression refrigeration system.

The thermodynamics of the cycle can be analysed on a diagram as shown in Figure 2. In this cycle, a circulating refrigerant such as Freon enters the compressor as a vapor. The vapor is compressed at constant entropy and exits the compressor superheated. The superheated vapor travels through the condenser which first cools and removes the superheat and then condenses the vapor into a liquid by removing additional heat at constant pressure and temperature. The liquid refrigerant goes through the expansion valve (also called a throttle valve) where its pressure abruptly decreases, causing flash evaporation and auto-refrigeration of, typically, less than half of the liquid.


...
Wikipedia

...